
Estimating a-priori Kinematic Wave Model Parameters Based on Regionalization for 1 

Flash Flood Forecasting in the Conterminous United States 2 

Humberto Vergaraa,b,c,d, Pierre Kirstetterc,b, Jonathan Gourleyb, Zac Flamiga,b,c, Yang Hongc,d, 3 

Ami Arthura,b, Randall Kolard 4 

 5 

Affiliation(s): 6 

a – Cooperative Institute for Mesoscale Meteorological Studies (CIMMS), The University of 7 

Oklahoma, Norman, OK, USA 8 

b – NOAA/National Severe Storms Laboratory (NSSL), Norman, OK, USA 9 

c – Advanced Radar Research Center (ARRC), The University of Oklahoma, Norman, OK, 10 

USA 11 

d – School of Civil Engineering and Environmental Science, The University of Oklahoma, 12 

Norman, OK, USA 13 

 14 

Corresponding author: 15 

Humberto Vergara 16 

120 David L. Boren Blvd. Ste. 4600 17 

National Weather Center 18 

Norman OK 73072-7307 19 

humber@ou.edu 20 

  21 

© 2016 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022169416303626
Manuscript_c099acb72feddcad6aafd2940f3f6d5f

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022169416303626
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022169416303626


Abstract 22 

This study presents a methodology for the estimation of a-priori parameters of the 23 

widely used kinematic wave approximation to the unsteady, 1-D Saint-Venant equations for 24 

hydrologic flow routing. The approach is based on a multi-dimensional statistical modeling of 25 

the macro scale spatial variability of rating curve parameters using a set of geophysical factors 26 

including geomorphology, hydro-climatology and land cover/land use over the Conterminous 27 

united States. The main goal of this study was to enable prediction at ungauged locations 28 

through regionalization of model parameters. The results highlight the importance of regional 29 

and local geophysical factors in uniquely defining characteristics of each stream reach 30 

conforming to physical theory of fluvial hydraulics. The application of the estimates is 31 

demonstrated through a hydrologic modeling evaluation of a deterministic forecasting system 32 

performed on 1,672 gauged basins and 47,563 events extracted from a 10-year simulation. 33 

Considering the mean concentration time of the basins of the study and the target application 34 

on flash flood forecasting, the skill of the flow routing simulations is significantly high for 35 

peakflow and timing of peakflow estimation, and shows consistency as indicated by the large 36 

sample verification. The resulting a-priori estimates can be used in any hydrologic model that 37 

employs the kinematic wave model for flow routing. Furthermore, probabilistic estimates of 38 

kinematic wave parameters are enabled based on uncertainty information that is generated 39 

during the multi-dimensional statistical modeling. More importantly, the methodology 40 

presented in this study enables the estimation of the kinematic wave model parameters 41 

anywhere over the globe, thus allowing flood modeling in ungauged basins at regional to 42 

global scales. 43 

 44 
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1. Introduction 47 

Providing useful estimates of the response of a hydrologic system (i.e. a catchment or 48 

watershed) at all locations (i.e. gauged and ungauged) is arguably The Challenge in rainfall-49 

runoff modeling. This was the main subject of the past decade-long focus of the International 50 

Association of Hydrological Sciences (IAHS) through its Prediction at Ungauged Basins 51 

(PUB) initiative (Sivapalan et al. 2003), which, although promoted scientific productivity, 52 

was largely unsuccessful in achieving its main goal (Hrachowitz et al. 2013). The underlying 53 

challenge of PUB can be phrased as how do we generate equally skillful model estimates at 54 

all locations regardless of whether there are measurements of the model output or not? A key 55 

aspect involved in this challenge is the regionalization problem in hydrologic modeling, 56 

which is primarily concerned with the estimation of parameters at ungauged locations (Beven 57 

2011). The parameters’ main role is to enable the versatility of the model in simulating a 58 

diverse set of hydrologic processes and responses, thus facilitating the application of the 59 

model at all locations. 60 

The estimation of hydrologic model parameters has been the concentration of many 61 

studies for the past two decades or so, the majority featuring model calibration techniques 62 

(e.g., Sorooshian et al. 1993; Boyle et al. 2000; Duan 2003; Gupta et al. 2003; Vrugt et al. 63 

2006; Vrugt et al. 2008). However, model calibration is a technique primarily developed for 64 

lumped hydrologic models. This is because the spatially aggregated conceptualization of 65 

processes and parameterization in lumped models makes it difficult to employ an approach 66 

based on characterizations of the spatial variability of the basin physical structure (e.g., 67 

topography or soil texture properties such as hydraulic conductivity). Process-based 68 

distributed hydrologic models, on the other hand, are specifically designed to take advantage 69 

of the ever-increasing availability of geospatial datasets from geographical information 70 

systems and remote-sensing platforms to resolve the dominant spatial patterns of the 71 



hydrologic system. Consequently, distributed hydrologic models can be configured using a-72 

priori methods for parameter estimation, which are naturally consistent with the PUB 73 

challenge and the regionalization problem. 74 

While work on a-priori estimates for water balance model parameters based on soil 75 

properties have been reported to the literature (e.g. Koren et al. 2000; Yao et al. 2012), few 76 

efforts have been devoted to derive spatially-distributed flow routing parameter estimates 77 

without conditioning from calibration (e.g. Naden et al. 1999). The primary objective of 78 

routing models is to describe the space-time evolution of water flow throughout a watershed, 79 

catchment or stream network. Moreover, flow routing is essential in the description of flood 80 

wave timing, which not only establishes when a flooding event occurs, but also the magnitude 81 

and duration of the flood. Flood wave timing is critical in forecasting approaches that rely on 82 

threshold-based methodologies for detection (e.g. Reed et al. 2007). Some studies like the 83 

ones of Montgomery and Gran (2001) and Finnegan et al. (2005) have analyzed controlling 84 

factors of the downstream variability of channel characteristics related to routing parameters. 85 

Koren et al. (2004) discuss a methodology in which rating curve data at the basin outlet can 86 

be propagated upstream to populate all grids within the watershed with estimates of the flow 87 

routing parameters. However, and to the knowledge of the authors, no study has reported a 88 

methodology to estimate flow routing parameters at continental scales. 89 

In this work, the spatial variability of parameter estimates of a physics-based 90 

distributed routing model was studied at the continental scale to devise an estimation 91 

approach based on regionalization. The choice of a physics-based model (i.e. models 92 

formulated from physical laws) is centered on the fact that model parameters are either based 93 

on or correspond to actual measurements of the physical system (Boyle et al. 2000), which 94 

facilitates the process of a-priori estimation. Moreover, the approach used herein to study the 95 

spatial characteristics of parameter estimates explores associations with several geophysical 96 



properties of the land surface. Using a model whose conceptualization of the physical system 97 

significantly departs from reality would prove difficult (if not impossible) to find aforesaid 98 

associations. The study was developed in the context of the Flooded Locations and Simulated 99 

Hydrographs (FLASH) project, whose main objective is “to improve the accuracy, timing, 100 

and specificity of flash flood warnings in the US” (NSSL 2014).Consequently, the overall 101 

goal of this study is find a-priori estimates of kinematic wave routing parameters in order to 102 

enable regional forecasting of floods and flash floods at a continental scale with a distributed 103 

hydrologic modeling system. 104 

2. Physics-based distributed flow routing model 105 

In general, there are two types of flow routing models: lumped routing models and 106 

distributed routing models, sometimes referred to as hydrologic routing and hydraulic routing 107 

respectively (Chow et al. 1988; Bedient et al. 2008). Lumped routing models usually employ 108 

empirical or conceptual ideas to describe the true mechanisms of water flow process in a 109 

hydrologic system. Distributed routing models, on the other hand, consider both space and 110 

time. Furthermore, and because water flow is a continuous variable, these models solve partial 111 

differential equations related to the physical laws governing the water movement mechanisms 112 

in a hydrologic system. Depending on the assumptions and approximations applicable to a 113 

particular hydrologic system, different distributed routing models can result. 114 

The model selected herein was the kinematic wave approximation to the one-115 

dimensional unsteady open channel flow equations developed by Barré de Saint-Venant in the 116 

1800s (Beven 2011). The full implementation of the Saint-Venant equations represents the 117 

closest description of the 1-D water movement in a watershed. However, the use of alternative 118 

models by simplification of the governing equations is motivated by simpler and 119 

computationally less expensive methods for distributed flow routing. Additionally, these 120 

simpler models can capture the dominant physical processes depending on specific flow 121 



conditions. Kinematic wave model is arguably the most widely used distributed flow routing 122 

method in hydrologic modeling, given its simplicity as compared to the diffusion or dynamic 123 

wave models. A general criterion to support the use of the kinematic wave approximation is 124 

based on the slope: in watersheds with predominantly steep slopes, the flow conditions are 125 

such that the kinematic wave concept reasonably approximates the unsteady flow phenomena 126 

(Ponce 1986). Moreover, Ponce (1991) claimed that for most overland flow situations, 127 

kinematic wave approximation requirements are satisfied. Kazezyilmaz-Alhan and Medina 128 

(2007) define a minimum slope of 0.002 as a general guidance value required for kinematic 129 

wave applicability. Figure 1 presents a map of the applicability of the kinematic wave 130 

approximation over the Conterminous United States (CONUS) based on the aforementioned 131 

criterion. It can be observed that the kinematic wave approximation applies for the majority of 132 

CONUS. 133 

Several well-known models or modeling frameworks implement kinematic wave for 134 

the flow routing component. A list of some past studies and modeling systems employing 135 

kinematic wave are presented in Table 1. In the majorities of these studies, the parameters of 136 

the routing model are derived from assumptions on the channel geometry (e.g. Feldman 1995; 137 

Feldman 2000; Liu and Todini 2002). In other cases, the estimation of the kinematic wave 138 

parameters relies on model calibration (e.g. Beldring et al. 2003). In this study, a methodology 139 

that does not employ assumptions of channel geometry nor relies on model calibration for the 140 

estimation of kinematic wave parameters is presented. 141 

2.1. Derivation of the Kinematic Wave approximation 142 

The one-dimensional nature of Saint-Venant equations relate to the fact that spatial 143 

variations of velocity can be neglected both horizontally and vertically across the channel 144 

when the interest is in the main direction of water flow (i.e. along the channel). Similarly, the 145 

water surface elevation is assumed to be constant horizontally at any section of the channel. In 146 



hydrologic applications at the watershed, catchment or stream network scales (e.g. hundreds 147 

of meters to a few kilometers), the aforementioned approximations are acceptable. The Saint-148 

Venant equations are derived from the Eulerian view of motion, where physical laws are 149 

applied to the continuum of a fluid as it passes through a control volume. The concept is 150 

applied through the Reynolds transport theorem, which relates the time rate of change of a 151 

mass-dependent property of the fluid to the external factors causing this change (Chow et al. 152 

1988). Applying the theorem to conservation of mass and momentum, Newton’s second law 153 

of motion, and neglecting lateral inflow, wind shear and eddy losses, the Saint-Venant 154 

equation for continuity is given as: 155 

 ∂Q
∂x

+ ∂A
∂t

= 0       (1) 156 

where Q is the flow, A is the channel cross-section area, x is a horizontal distance and t is 157 

time. Likewise, the equation for momentum is given as: 158 

1
A
∂Q
∂t

+ 1
A

∂
∂x

Q2

A
⎛
⎝⎜

⎞
⎠⎟
+ g ∂y

∂x
− gSo + gSf = 0   (2) 159 

where g is the acceleration due to gravity, So is the slope of the bottom of the channel, and Sf 160 

is the friction slope. Equation (2) above can be broken down into the different physical 161 

processes governing flow momentum represented in each equation term (from left to right): 162 

the local acceleration, the convective acceleration, the pressure force, the gravity force and the 163 

friction force. 164 

Equations (1) and (2) above represent the governing equations for one-dimensional, 165 

unsteady, open channel flow. Simplifications in the Saint-Venant equations result in different 166 

distributed routing models. When equation (1) and (2) are applied in full (i.e., no 167 

simplifications), the method is called a dynamic wave model. When the acceleration (i.e., 168 

inertial) terms are neglected in (2), the method is called a diffusion wave model. Finally, if the 169 

acceleration and force (i.e. pressure) terms are ignored in (2), the method is called a kinematic 170 



wave model. Depending on the attributes of the channel and flow magnitude, the application 171 

of diffusion or kinematic wave approximations might be limited. For example, in the case of 172 

overbank flow during flood events where the geometry and material of the floodplain 173 

significantly differ from the main channel section and the vertical variability of velocities are 174 

not negligible (Moussa and Bocquillon 2000). However, it is a common practice to select one 175 

approximation depending on other criteria such as computational efficiency and availability of 176 

the necessary information to estimate model parameters. The latter two criteria were the main 177 

considerations for the choice of the kinematic wave model in the implementation featured in 178 

this study. 179 

The kinematic wave simplifications yield So = Sf, which means that the flow is 180 

assumed uniform and, thus, a function of depth or channel’s cross-section area alone. 181 

Consequently, the form of the kinematic wave equation for momentum becomes: 182 

Q =αAβ       (3) 183 

where α and β are the kinematic wave model parameters. Substitution of (3) in (1) yields an 184 

expression for solving for Q as the only dependent variable (Chow et al. 1988): 185 

∂Q
∂x

+αβQβ−1 ∂Q
∂t

= q      (4) 186 

where q is the lateral inflow to the channel.  187 

2.2. Methods for the estimation of the kinematic wave parameters 188 

The standard method to estimate the kinematic wave parameters is based on an 189 

assumed channel cross-section shape and the application of Manning’s equation, which 190 

accounts for the slope and the roughness of the channel (Bedient et al. 2008). Commonly used 191 

shapes to model natural streams’ channel cross-section are rectangular, trapezoidal and 192 

parabolic (Dingman 2009). Each of these has explicit functions for the estimation of α and β 193 

derived from Manning’s equation. A caveat of this method is precisely the need for explicit 194 



specification of channel cross-section shape. Because of the mathematical manipulation of 195 

Manning’s equation, it is difficult (if not impossible) to use the actual cross-section shapes of 196 

natural streams, which are rather irregular. Moreover, the assumption of regular shapes, on the 197 

other hand, consequently leads to the assumption of prismatic channels (i.e. assuming the 198 

entire channel has a constant shape). There have also been attempts to employ 199 

geomorphological characteristics of basins and empirical relationships with channel geometry 200 

(e.g. Vélez et al. 2009; Reggiani et al. 2014). However, these empirical relationships are 201 

based on limited samples of river reaches and are usually followed by model calibration. 202 

An alternative method is based on statistical analysis of rating curve data. Field 203 

measurements at stream gauges provide a mean to estimate the parameters α and β directly. 204 

Based on the form of the momentum equation shown in (3), a power function relating 205 

streamflow and channel cross-sectional area can be fitted to data measured in the field (Fig. 206 

2). The field data needs to encompass a wide range of flows to have a representative sample 207 

able to describe the relationship. Usually, the majority of the data come from flows of low to 208 

average magnitudes (although it can also include some significantly high flows), because of 209 

the low frequency of high flows and difficulties in measuring in the field under flooding 210 

conditions (Beven 2011). Also, certain locations display a rather high irregularity in channel 211 

geometry, which leads to multiple relationships between streamflow and cross-section area. 212 

Panel b) of Fig. 2 shows an example of this kind of behavior, where at approximately 600 213 

m3/s, the relationship changes abruptly indicating a significant change in geometry. These 214 

changes occur when the material of the channel transitions from fine to coarse sediments such 215 

as in the case of water flowing out of the riverbanks to the floodplain (Ryan and Porth 2007). 216 

Although a multi-segment fit to field measurements data is possible and can more accurately 217 

parameterize rating curves (Reitan and Petersen-Øverleir 2009), a single segment fit approach 218 

was chosen for simplicity and avoid the necessity of modifying the implementation of the 219 



kinematic wave model to employ variable parameters. Nevertheless, this approach offers a 220 

way to directly estimate kinematic wave parameters, which implicitly accounts for channel 221 

cross-section shape, roughness, and slope. 222 

This method has been described for the configuration of the HL-RMS distributed 223 

model in Koren et al. (2004) and in unpublished work by the Office of Hydrologic 224 

Development (OHD). They present a methodology to propagate the estimates of the rating 225 

curve parameters obtained at gauged locations to upstream locations (i.e. ungauged) using 226 

several empirically derived geomorphological functions based on drainage area solely. While 227 

their results show reasonable skill, their methodology is aimed at estimating routing 228 

parameters at the local scale. Additionally, some aspects in their methodology, such as the use 229 

of drainage area alone to define the variability of the parameter estimates, and the upstream 230 

propagation approach are simplistic and subject to unverified assumptions. Intuitively, flow 231 

conditions in non-regulated streams (i.e. no regulation or diversion structures) are defined by 232 

both local and upstream regional factors and, thus, a downstream approach is preferred. 233 

3. Methodology of the a-priori estimation 234 

The approach to kinematic wave parameters estimation presented herein is based on 235 

the rating curve method described in Section 2.2. The main aspect of the strategy was the 236 

investigation of explanatory geophysical factors of the spatial variability of rating curve 237 

parameters at a macro scale, with the aim of estimating kinematic wave parameters. This data 238 

intensive exercise represents a case of what has been called the “fourth paradigm of science” 239 

(Hey 2012) and the concept of “large sample hydrology” (Gupta et al. 2014). The ultimate 240 

goal of this study was to enable river flow routing simulation with a distributed hydrologic 241 

model for flash flood forecasting over CONUS without calibration (i.e. without model 242 

parameter fitting to a streamflow time-series). 243 



3.1. Geospatial datasets over CONUS 244 

3.1.1. Field measurements of streamflow and channel cross-section area 245 

Using the record of stream gauge stations in the database described in Gourley et al. 246 

(2013), field measurement data from the U.S. Geological Survey (USGS) archive were 247 

obtained. A series of filtering steps were taken in order to robustly generate an appropriate 248 

sample for the statistical analysis of the spatial variability of rating curve parameters. First, 249 

the selection of stations was limited to those within CONUS, which amounts to approximately 250 

9,000 gauges. Secondly, a filter was applied to the record in order to study natural streams 251 

only (i.e. no regulation or diversion of any degree). The identification of regulated stations 252 

was done by examination of the annual peak flow historical record of each USGS gauge 253 

station, where flags indicating the level of impact by regulation or diversion are specified. 254 

Lastly, an automatic processing script was employed to fit the streamflow and channel cross-255 

sectional area data to a power-law function following Equation (3) for each of the selected 256 

USGS stations (see example in Fig. 2). An evaluation of the goodness-of-fit yielded a final 257 

sample size of 4,943 stream gauges employed in the analysis of this work. 258 

3.1.2. Watershed characteristics as explanatory variables 259 

Streamflow results from the natural integration in space and time of the different 260 

hydrologic processes occurring in a watershed (or basin), the main physical unit subject to 261 

measurements and modeling in hydrology (Bedient et al. 2008). For effects of analysis and 262 

the hydrologic model implementation, the pixel of a rectangular grid is defined herein as the 263 

elementary unit representing a stream reach and the immediately adjacent overland area (i.e. 264 

hillslope). The particular characteristics of each stream reach, assumed to be uniform within 265 

the pixel, are uniquely determined by the flow contributed by its drainage basin, its current 266 

and past geology, topography, pedology and climate, and are part of a spatial continuum that 267 

includes the entire watershed (Dingman 2009). Therefore, several of these geophysical 268 



characteristics of watersheds were explored as potential explanatory factors of the variability 269 

of rating curve parameters. 270 

All geospatial datasets employed in this study were rendered on a rectangular grid with 271 

a 1-km pixel resolution. The grid was specifically chosen to match the Digital Elevation 272 

Model (DEM) grid on which the flash flood forecasting system is configured over the 273 

CONUS. Using DEM data, it is possible to derive geomorphological parameters of any given 274 

watershed or catchment. DEM is virtually available everywhere over the globe at high 275 

resolution (e.g. 30 meters), which enables the ability to generate geomorphological 276 

information at all gauged and ungauged locations. The DEM data used herein were based on 277 

the USGS’ National Elevation Dataset (NED; Gesch et al. 2009). Geomorphological variables 278 

considered herein were selected based on the studies by Schumm (1956) and, in particular, 279 

Costa (1987) who analyzed relationships between characteristics of watersheds and flash 280 

floods over the CONUS. The variables include drainage basin area, elongation ratio, relief 281 

ratio, slope index, slope at the outlet, and river length. 282 

The hydro-climatology of basins was considered by examining mean annual 283 

precipitation and average temperature. The data correspond to the 30-year datasets prepared 284 

by the PRISM Climate Group (PRISM Climate Group 2012) covering the period 1981 - 2010. 285 

Soil datasets from the STATSGO database (Soil Survey Staff 1994; Miller and White 1998) 286 

were examined herein. Variables explored from this dataset include soil class, mean rock 287 

volume percent, mean depth-to-rock, and erodability factor (K factor). Lastly, land cover and 288 

land use data from the National Land Cover Dataset (NLCD 2006; Fry et al. 2011) were 289 

utilized to explore the impact of the runoff (i.e. USDA NRCS) curve number. 290 

3.2. Multidimensional analysis of kinematic wave parameters’ variability over CONUS 291 

In this work, the spatial variability of the kinematic wave parameters was analyzed 292 

through conditional distribution functions. The sets of α and β distributions were studied 293 



using the Generalized Additive Models for Location, Scale, and Shape (GAMLSS; 294 

Stasinopoulos and Rigby 2007) technique. The GAMLSS model aims to simulate the 295 

parameters of a distribution of the response variable (i.e., α or β) according to the values 296 

assumed by some explanatory variables (i.e., the geophysical characteristics of basins). 297 

GAMLSS was chosen over other multidimensional analysis methods (e.g., principal 298 

component analysis or a canonical correlation analysis) because modeling the complete 299 

conditional distributions enables diagnostic capabilities on the resulting estimates. More 300 

importantly, this method explicitly acknowledges the inherent uncertainty of the estimates, 301 

which can be employed for probabilistic applications. 302 

Both parameters α and β were analyzed separately following the same approach. To 303 

simplify the description of the methodology, the GAMLSS modeling procedure on α alone is 304 

explained as follows. Two main assumptions were made: 1) the response variable α is a 305 

random variable following a known parametric distribution with density f conditional on the 306 

location parameter µ and the scale parameter σ, and 2) the observed α values are mutually 307 

independent given the parameter vectors µ and σ. Each distribution parameter was modeled as 308 

a function of the explanatory variable using monotonic (linear/nonlinear or smooth) link 309 

functions. More details are provided by Rigby and Stasinopoulos (2001; 2005), Akantziliotou 310 

et al. (2002) and Stasinopoulos and Rigby (2007), particularly on the model fitting and 311 

selection. It involves identifying a suitable distribution of α, the explanatory variables and the 312 

link functions. The estimation method is based on the maximum likelihood principle and the 313 

model selection is carried out by checking the significance of the fitting improvement in terms 314 

of information criteria such as the Akaike Information Criterion (AIC), the Schwarz Bayesian 315 

Criterion (SBC) and the generalized AIC (GAIC; Stasinopoulos and Rigby 2007). Forward, 316 

backward, and step-wise procedures were applied to select the meaningful explanatory 317 



variables, supervised by diagnostic plots to check the fitting performance as discussed in 318 

Stasinopoulos and Rigby (2007).  319 

A wide variety of distributional forms are available within GAMLSS. A number of 320 

conditional two-parameter density functions (lognormal, normal, reverse gumbel, logistic, 321 

gamma, etc.) were tested to fit the data. The goodness-of-fit on the whole dataset was checked 322 

with the AIC for each of the semi-parametric density fits. The logistic distribution was found 323 

to be the most appropriate: 324 

fy y | µ,σ( ) = 1
σ
e
− y−µ

σ
⎛
⎝⎜

⎞
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   (5) 325 

The function above was used to model the conditional α distributions, where the 326 

location µ is linked to the expected α value, and the scale σ is representative of prediction 327 

uncertainty. After selecting the distribution family, the structure of the model was refined 328 

through an iterative procedure by trying several combinations of explanatory variables. The 329 

trends for each parameter are fitted using penalized splines, which are more flexible than 330 

polynomials or fractional polynomials for modeling complex nonlinear relationships. Lastly, 331 

the goodness-of-fit was checked by computing the residuals, first four moments, their Filliben 332 

correlation coefficient, and quantile-quantile plots (Stasinopoulos and Rigby 2007). 333 

3.3. Hydrologic Validation strategy 334 

3.3.1. Hydrologic modeling using a-priori estimates of the kinematic wave parameters 335 

Additional to the statistical verification explained above, a strategy based on a 336 

hydrologic evaluation was employed herein. The methodology evaluates the estimates of the 337 

kinematic wave parameters through an assessment of a deterministic hydrologic model 338 

implementation over CONUS. A probabilistic application of the a-priori estimates is possible 339 

given the uncertainty information that is part of their multi-dimensional modeling (Section 340 

3.2). However, implementing the kinematic wave parameter estimates in their probabilistic 341 



form is not a trivial task because most hydrologic models are formulated in a deterministic 342 

way. Even an ensemble-based method poses challenges in terms of the multivariate nature of 343 

uncertainty. This is particularly difficult in this case because the α and β parameters were 344 

modeled independently and, thus, no information about their covariance is available. The 345 

level of difficulty added by a probabilistic implementation warrants a dedicated study in 346 

future work. Because of the focus of this study, a deterministic implementation of the 347 

kinematic wave parameter estimates for the hydrologic modeling evaluation is preferred. 348 

The hydrologic model employed in this study was an implementation of the Coupled 349 

Routing Excess and Storage (CREST) distributed hydrologic model (Wang et al. 2011) that is 350 

used in a modeling framework for flood and flash flood prediction entitled the Ensemble 351 

Framework For Flash Flood Forecasting (EF5;Flamig et al. 2010). EF5 is a flexible modeling 352 

framework that enables the combination of different physical representations for hydrologic 353 

simulation. The configuration used herein consisted of the water balance component of 354 

CREST coupled to the kinematic wave model for surface flow routing. Subsurface flow 355 

routing was modeled using a distributed version of the linear reservoir (Nash 1957), a lumped 356 

routing model commonly used in hydrology (Moore 1985; Chow et al. 1988; Vrugt et al. 357 

2003). The water balance model is based on the variable infiltration curve (Zhao et al. 1980; 358 

1995) for the computation of excess rainfall, which is partitioned into its surface and 359 

subsurface components through a conceptual mechanism based on hydraulic conductivity 360 

(Wang et al. 2011). The surface excess rainfall component is routed as overland flow with an 361 

implementation of the kinematic wave model for a wide shallow (sheet) flow as: 362 

∂q
∂x

+α0
3
5
q3/5−1 ∂q

∂t
= i − f     (6) 363 

where q is the overland flow in m3/s.m2 and the lateral inflow term of equation (4), i – f is the 364 

surface excess rainfall from the water balance in m/s, and α0 is an overland conveyance 365 

parameter defined as a function of Manning’s roughness coefficient and overland slope alone. 366 



The hydrologic model was configured with a-priori estimates for all of its parameters. 367 

This includes seven parameters for the water balance and the excess rainfall routing 368 

(subsurface and surface), and the kinematic wave parameters α and β for river routing subject 369 

of this study (see Table 2). Climatological mean monthly potential evapotranspiration data 370 

(Koren et al. 1998) were used as part of the hydrologic model inputs. High resolution (1-371 

km/5-min) quantitative precipitation estimation data from the Multi-Radar/Multi-Sensor 372 

system (MRMS; Zhang et al. 2011; Zhang et al. 2015) were utilized to force the hydrologic 373 

model. A period of 10 years (2002 – 2011) was used to generate simulations of streamflow at 374 

a 5-min time step. 375 

3.3.2. Event-based Skill Assessment 376 

An event-based approach to skill evaluation was followed herein. Individual 377 

streamflow events were selected with an algorithm that utilizes a threshold value and a 378 

hydrograph separation procedure. An event was defined as that exceeding the 90th percentile 379 

flow value of the historical record at each gaged location. The evaluation employed stream 380 

gauge stations with no regulation and drainage area less than 1,000 km2, which is a 381 

representative scale for the majority of drainages over CONUS (> 95%; Fig. 3). Additionally, 382 

locations with poor radar coverage and significant snow in the annual precipitation were 383 

filtered out. Radar coverage was quantified using the Hybrid Scan Reflectivity Height 384 

(HSRH; km), which is part of the MRMS suite of products. The percentage of pixels within a 385 

basin with an HSRH below 2 km was computed, and a subjectively chosen threshold of 80% 386 

was used to select basins with adequate coverage. Mean percentage of snow contribution to 387 

total annual precipitation was obtained from the Geospatial Attributes of Gages for Evaluating 388 

Streamflow (GAGE) dataset (Falcone et al. 2010), and a threshold of 30% was used to filter 389 

out snowmelt-dominated basins. 390 



The aforementioned screening procedure resulted in an evaluation sample consisting 391 

of 47,563 events from 1,672 basins. This filtering was performed in order to reduce the 392 

impact of uncertainty from sources unrelated to the estimation of kinematic wave model 393 

parameters. Naturally, not all sources of uncertainty can be effectively neglected or accounted 394 

for. However, the quantitative approach to skill evaluation employed herein is able to target 395 

specific signatures of the modeling of flood wave routing. Two metrics to assess the skill of 396 

the simulations were used in these experiments: Peak Time Error (in units of hours) and 397 

Relative Peak Error (in units of %). Vergara et al. (2013) demonstrated the use of these two 398 

metrics to disentangle the impact of rainfall and flow routing uncertainty. The Peak Time 399 

Error was computed using serial date numbers, which represent the fractional number of 400 

hours from a reference date and time (e.g. 01-Jan-2000 00h): 401 

Peak _Time_Error(hours) = Dtsim
peak −Dtobs

peak

   (6) 402 

where Dtobs
peak is the serial date number of the observed peak flow in hours and Dtsim

peak  is the 403 

serial date number of the simulated mean peak flow in hours. A negative value of the Peak 404 

Time Error indicates peak flow is simulated early, while a positive value indicates peak flow 405 

is simulated late. To further the interpretation of the peak timing skill, mean concentration 406 

time of each of the selected basins in computed according to the method described by Mockus 407 

(1961) and used as reference value for the magnitude of the Peak Time Error. Lastly, the 408 

Relative Peak Error is computed according to the following: 409 

Peak _Error(%) = Qsim
peak −Qobs

peak

Qobs
peak

⎛
⎝⎜

⎞
⎠⎟
×100%

   (7)
 410 

where Qobs
peak  is the event’s observed peak flow in m3/s and Qsim

peak
 is the event’s simulated peak 411 

flow in m3/s. A negative value of the Relative Peak Error indicates underestimation of the 412 

event’s peak flow, while a positive value indicates overestimation of the event’s peak flow. 413 



4. Discussion of modeling results 414 

4.1. Estimation of parameters α  and β  415 

4.1.1. Association of α and β with watershed geophysical characteristics 416 

Figure 4 presents the values of the rating curve parameters from all selected USGS 417 

stations over CONUS. An initial visual assessment of the spatial variability of both 418 

parameters reveals distinct patterns associated with the hydro-climatology and topography 419 

across the CONUS. Specifically, α variability appears correlated with the mean annual 420 

precipitation and β shows a strong association with relief ratio (Fig. 5). The β parameter also 421 

presents features corresponding to some clusters observed in the mean rock volume percent. 422 

This is consistent with findings of Finnegan et al. (2005) in relation to the scaling of channel 423 

geometrical characteristics depending on the material in which the channel is developed. 424 

Scatterplots illustrating the aforementioned associations are presented in Fig. 6. The 425 

scaling effect of drainage area on the α parameter is arguably not surprising given its well-426 

known relationship with channel width used in fluvial hydraulics (Montgomery and Gran 427 

2001; Dingman 2009). An interesting feature, however, is the conditioning of this scaling by 428 

the hydro-climatology of the basins. Likewise, the indirect relationship between the β 429 

parameter and the relief ratio of the basins shows dependency on the mean rock volume 430 

percent. The aforementioned conditioning is a consequence of the interactions between 431 

different geophysical factors, which are evidenced by the clustering of points shown with the 432 

color scales. Further analysis of associations between the rating curve parameters and 433 

geophysical characteristics was performed through 2-D and 3-D methods such as density-434 

colored scatterplots. However, it was not possible to observe additional significant 435 

relationships because the conditioning of the associations, which are a consequence of the 436 

interactions of several geophysical factors considered, needs to be assessed through high-437 

dimensional analytical methodologies, such as GAMLSS. 438 



4.1.2. Multi-dimensional modeling with GAMLSS 439 

The GAMLSS model was constructed following the methodology explained in Section 440 

3.2. The geophysical variables retained by GAMLSS and their corresponding statistical 441 

significance values are presented in Table 3. Additionally, diagnostic scores of the goodness-442 

of-fit are included in Table 4. The model identified several of the important factors that were 443 

discussed in the simpler 2-D analysis discussed in Section 4.1.1. Drainage area, relief ratio, 444 

rock volume and the hydro-climatic variables are highlighted by their significance levels. This 445 

can be interpreted as a sign of robustness of the GAMLSS model. 446 

An evaluation of the resulting model is shown in Fig. 7. Panels a) and b) in the figure 447 

present scatter density plots for α and β. Overall, GAMLSS displays skill to predict the 448 

expected values of α and β as indicated by the high densities of data points close to the 1-to-1 449 

line and by their correlation coefficient values of 0.73 and 0.63, respectively. However, 450 

significant inaccuracies can be observed on the upper end of the rating curve α and the lower 451 

end of the rating curve β. An investigation of the rating curves associated with these estimates 452 

revealed a flow rate-dependent hysteresis at the corresponding gauged locations. The 453 

methodology followed herein for the fitting of rating curves does not account for this behavior 454 

and, thus, the estimates of the power-law regression parameters will have significant 455 

uncertainty. Moreover, the conditions that need an elaborate description of the hydraulics in 456 

an open channel (e.g. dynamic wave model) are out of the scope of the flow routing modeling 457 

subject of this work. A summary of the conditional distributions of the predicted values of α 458 

and β are shown in quantile plots in panels c) and d) of Fig. 7. It can be observed that in both 459 

cases the estimates display heteroscedasticity with respect to the reference values. These plots 460 

also show the significant variability on the upper end of the range of α values and the lower 461 

end of β values. This information is useful for applications that consider uncertainty such as 462 

in probabilistic forecasting frameworks. 463 



The model fit with GAMLSS was employed to produce 1-km grids of the kinematic 464 

wave parameters over the CONUS. Each of the geophysical variables used in the analysis was 465 

available over the entire computational grid for which the hydrologic model was configured 466 

as explained in Section 3.1.2. Some of the ranges of the explanatory variables for the 467 

prediction dataset are larger than those for the training dataset (Table 5). The methodology, 468 

however, allows for a supervised extrapolation that was implemented herein. Figure 8 469 

presents samples of the a-priori estimates of the kinematic wave parameters α and β and their 470 

corresponding grids of standard deviation. The main spatial patterns observed on the grids 471 

clearly correspond to climatology of precipitation and relief. A closer examination on the α 472 

grid also shows the influence of catchment size as indicated by high values at large streams. 473 

This is consistent with the analysis on geophysical characteristics discussed in Section 4.1.1 474 

above. Additionally, it can be observed that the estimates have low standard deviations, which 475 

indicates that the GAMLSS model has good precision. Some regions display noticeably 476 

higher standard deviation such as in Nebraska, northwestern Kansas, Iowa, Illinois, the 477 

Mississippi valley, Florida, and southern California. Locations with significantly higher 478 

deviations are generally scattered although some clusters can be observed for the β estimates 479 

over Florida, the Mississippi valley and on the coast of North Carolina. Visual inspection of 480 

the maps of the different geophysical variables points to flat areas where the kinematic wave 481 

model may not apply and sandy soils as possible factors for this variability in the estimates. A 482 

rigorous and elaborate analysis of this particular aspect of the estimation should be performed 483 

in future works to understand these specific factors of uncertainty.  484 

4.2. Hydrologic modeling evaluation 485 

4.2.1. Discussion on event-based evaluation and flow routing signatures 486 

Streamflow at any given location (e.g. an outlet) results from the convolution of flood 487 

wave routing of upstream reaches. Therefore, the analysis herein on streamflow simulation is 488 



representative of the integrated impact of the estimates of the kinematic wave parameters. A 489 

sample of the simulation of streamflow events demonstrating model skill and different 490 

signatures of the simulated flood wave routing is presented in Fig. 9. The events were selected 491 

from a historic group of floods occurring in September of 2009 in the southeast of the United 492 

States, where eleven fatalities resulted from flash floods and floods and a total of $270M USD 493 

of damage occurred (NWS 2010). In general, the hydrologic model with its a-priori 494 

configuration (i.e. no calibration) shows good skill in reproducing the hydrologic response to 495 

rainfall in each of the cases. The variability in the magnitude and timing of the peaks is due to 496 

uncertainty from several sources including those in radar rainfall estimates and the hydrologic 497 

model itself. 498 

General signatures of flow routing modeling in streamflow hydrographs can be 499 

described with the cases shown in Fig. 9. Early and high (overestimated) peaks indicate that, 500 

overall, the flood wave is routed too fast (panels c and d), displaying a tendency for “flashy” 501 

responses. Late and low (underestimated) peaks indicate that the flood wave is routed too 502 

slowly (panel b) and shows attenuated responses. Both types of model behavior have an 503 

impact on the detection and prediction of floods in systems that rely on flooding thresholds: 504 

too fast flow routing will tend to over predict the occurrence of floods (i.e. increased false 505 

alarm rates), while too slow flow routing will tend to under predict the occurrence of floods 506 

(i.e. increased miss rates). In addition to the aforementioned cases, there are events that 507 

display strong signatures of the interaction between uncertainty in the runoff generation 508 

component (i.e. the water balance) and in the flow routing. In panel e) of Fig. 9, there is 509 

overestimation of the magnitude with a late peak, which indicates overestimation of excess 510 

rainfall in combination with a slow flow routing. On the other hand, panel f) shows a case 511 

where the peak is underestimated but occurs early, which indicates underestimation of the 512 

excess rainfall and fast flow routing. Lastly, the “ideal” case is presented in panel a) with a 513 



near perfect flood wave timing, although minor overestimation of the total volume can be 514 

observed. 515 

4.2.2. Event-based evaluation over CONUS 516 

Taking into consideration the aspects discussed in Section 4.2.1, an evaluation of the 517 

47,563 events from the selected 1,672 basins was performed. Histograms of peak time error 518 

and relative peak error are shown in Fig. 10. The peak timing obtained from the a-priori 519 

estimation of routing parameters is remarkably skillful. The peaks tend to be early only 15 to 520 

25 minutes on average. Figure 11 shows the contrast of peak time error to mean concentration 521 

time. It can be observed that the conditional median of peak time errors in much smaller than 522 

the concentration time, which further illustrates the significant skill of the kinematic wave 523 

parameter estimates. Moreover, the standard deviation is about 3.7 hours, which represents a 524 

skill arguably acceptable for flash flood forecasting. 525 

The peak magnitude, on the other hand, tends to be underestimated. Furthermore, its 526 

frequency displays significant variability indicating that high underestimation can occur. Peak 527 

magnitude errors are more likely to be related to water balance uncertainty, in which 528 

quantitative precipitation estimates from radar can play a significant role. However, routing 529 

could also explain some of the magnitude errors of peak flow as discussed in Section 4.2.1. 530 

5. Summary and conclusions 531 

In this work, a methodology was devised to generate a-priori estimates for the 532 

parameters of the widely used kinematic wave approximation to the unsteady, 1-D Saint-533 

Venant equations for hydrologic flow routing. The approach is based on an analysis of the 534 

conditional distribution of rating curve parameters over the Conterminous United States given 535 

a set of geophysical basin characteristics including geomorphology, hydro-climatology, 536 

pedology and land cover/land use. The main goal of this study was to enable prediction at 537 



ungauged locations through regionalization of model parameters. Key remarks of this work 538 

can be summarized as follows: 539 

• The results of this work demonstrate the value of a-priori parameter estimation in a 540 

successful configuration of a hydrologic modeling system. The expected skill of the 541 

flow routing simulations, considering the mean concentration time of the basins and 542 

that no calibration was performed, is significantly high for peakflow and timing of 543 

peakflow estimation. More importantly, the skill shows consistency as indicated by the 544 

large sample verification. Attaining such level of skill and consistency is crucial in 545 

extending forecasting capabilities to ungauged locations. 546 

• The resulting grids of a-priori estimates can be used in any hydrologic model that 547 

employs the kinematic wave model for flow routing. Moreover, the methodology 548 

presented in this study enables the estimation of the kinematic wave model parameters 549 

anywhere over the globe, thus allowing flood modeling in ungauged basins at regional 550 

to global scales. 551 

• Even though the demonstration of the estimates in a hydrologic modeling exercise was 552 

deterministic, the multi-dimensional analysis on the kinematic wave parameters 553 

considers uncertainty during the estimation of a-priori values. This uncertainty 554 

information of the estimates can be utilized for probabilistic applications. 555 

• The approach to parameter estimation featured herein combines the power of large 556 

sample hydrology, statistical multi-dimensional analysis and physical theory to 557 

investigate regional and local controls of the spatial variability of channel 558 

characteristics that can be parameterized using the rating curve. The results highlight 559 

the importance of regional and local geophysical factors in uniquely defining 560 

characteristics of each stream reach conforming to physical theory of fluvial 561 

hydraulics. 562 



• An important aspect of this approach is its consistency with the scale of flood and 563 

flash flood modeling (commensurability). Furthermore, it addresses challenges in 564 

standard methodologies that rely on information whose availability might not be 565 

adequate for regional to global modeling, and whose scale is not explicitly resolved at 566 

the scale of the application. 567 

Overall, this contribution illustrates the advantages of investigating relationships of 568 

model parameters with geophysical variables whose availability in the form of geospatial 569 

datasets is increasing. The particular exercise on the kinematic wave parameters leaves room 570 

for further development in terms of accuracy and adaptability to different basin physical 571 

structures. The latter is specifically needed to extend this work to modeling applications at the 572 

global scale. Future research will tackle some of the simplifications of the implementation of 573 

the kinematic wave used herein, such as the flow-independent nature of the parameter 574 

estimates. 575 

  576 
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Figure 1: Applicability of the kinematic wave approximation over the Conterminous 767 

United States based on slope. The slope grid is based on a 1-km Digital Elevation Model 768 

(DEM) grid.	769 

Figure 2: Power fit to rating curve data for streamflow (x-axis) and cross-section area 770 

(y-axis) measured in the field for USGS stations: a) 01118010 (~531 km2) and b) 02083500 771 

(~5654 km2). The dots correspond to the field measurements and the dashed line to the power 772 

law regression fit.	773 

Figure 3: Cumulative distribution of drainage areas over CONUS, computed from the 774 

1-km drainage area grid.	775 

Figure 4: Spatial distribution of rating curve parameters for the catchments of the 776 

selected USGS stream gauges over the CONUS: a) α in log scale; and b) β.	777 

Figure 5: Sample of geospatial datasets used in the analysis of spatial variability of 778 

rating curve parameters: a) Relief ratio (log scale); b) K factor (Erodability); c) Mean annual 779 

precipitation (log scale; mm/year); d) Mean temperature (Celsius); e) Mean rock volume 780 

percent (log scale; %); and f) Runoff Curve Number.	781 

Figure 6: A sample of the obtained results from the analysis of associations of 782 

kinematic wave model parameters to geophysical variables.	783 

Figure 7: Evaluation of the goodness-of-fit of the GAMLSS model estimates of 784 

kinematic wave model parameters α and β : a) Scatter density plots of the reference rating 785 

curve parameter values and estimates produced with GAMLSS for α; b) Same as a) but for β; 786 

c) Conditional percentile plot of α estimates given reference rating curve parameter values; 787 

and d) Same as c) but for β. The 1-to-1 line and values of linear correlation coefficient are 788 

included for each fit in panels a) and b).	789 



Figure 8: Samples of a) α a-priori estimates and b) β  a-priori estimates , c) standard 790 

deviation of α  a-priori estimates and d) standard deviation of β  a-priori estimates. Standard 791 

deviation colormaps are stretched to 2% and 98% percentiles.	792 

Figure 9: Sample hydrographs showing different simulated flow routing skill 793 

signatures. The hydrographs correspond to events occurred during September of 2009 on the 794 

Southeast of the United States: a) near perfect routing (Mississippi), b) late and low peak 795 

(Arkansas), c) early and high peak (Tennessee), d) early and high peak (Tennessee), e) late 796 

and high peak (Georgia) and f) early and low peak (near Atlanta, Georgia).	797 

Figure 10: Histograms of the a) Peak Time Error (hours) and b) Relative Peak Error 798 

(%) for the approximately 47,563 events. Measures of location and scale are included for each 799 

case.	800 

Figure 11: Quantile plot of conditional distributions of peak time errors with respect to 801 

the mean concentration time of the basins. The diagonal dashed lines show the direct (upper 802 

line) and indirect (lower line) 1-to-1 relationships. The gradients of gray area depict different 803 

distribution bounds: 1 – 99th percentiles, 5 – 95th percentiles, 10 – 90th percentiles and 25 – 804 

75th percentiles. The black solid line represents the median of the conditional distributions.	805 

806 



Table 1: List of past study cases of kinematic wave application. 807 

Model Name Institution Reference 
Hydrology Laboratory’s 
Distributed Hydrologic Model 
(HL-DHM) 

Office of Hydrologic 
Development, National 
Weather Service 

Koren et al. 2004 

Hydrologiska Byråns 
Vattenbalansavdelning (HBV) 
model 

Norwegian Water Resources 
and Energy Directorate, 
Norway 

Beldring et al. 2003 

TOPographic Kinematic 
APproximation and Integratio 
(TOPKAPI) 

University of Bologna, Italy Liu and Todini 2002 

Hydrologic Engineering Center’s 
Hydrologic Modeling System 
HEC-HMS 

U.S. Army Corp of Engineers Feldman 2000 

Storm Water Management Model 
(SWMM) 

Environmental Protection 
Agency 

Huber and Singh 1995 

Hydrologic Engineering Center’s 
Flood Hydrograph Package (HEC-
1) 

U.S. Army Corp of Engineers Feldman 1995 

Distributed Hydrology-Vegetation 
Model (DHVM) 

University of Washington Wigmosta et al. 1994 

KINEmatic Runoff and EROSion 
(KINEROS) 

U.S. Department of 
Agriculture 

Woolhiser et al. 1990 

  808 



Table 2: CREST model parameters and a-priori estimates 809 

Parameter (Units) Description Range Source 
PWM (mm) Soil water capacity 0 - 690 STATSGO dataset (Miller and 

White 1998) 
PIM (%) Percent of impervious 

surface area 
0 – 100 URB_2000 - built-up land 

(residential and 
infrastructure)” 
From Harmonic World Soil 
Database (HWSD; Fischer et al. 
2008) 

PB (-) Infiltration curve 
exponent 

0 – 11.55 STATSGO dataset (Miller and 
White 1998) and look-up table in 
Cosby et al. (1984) 

PFC (mm/h) Hydraulic conductivity 0 – 50.8 STATSGO dataset (Miller and 
White 1998) 

UNDER (m/h) Speed of subsurface 
flow 

0 – 0.051 A scaled value of Hydraulic 
Conductivity (PFC parameter 
above) 

LEAKI (-) Interflow linear 
reservoir leakage factor 

0 - 1 STATSGO dataset (Miller and 
White 1998) and empirical 
relationship based on CN number 
(Pokhrel et al. 2008) 

COEM (-) Inverse of Manning’s 
coefficient for overland 
routing 

8.3 – 66.67 UMD vegetation category from 
2007 MODIS (Wei et al. 2009) 

PKE (-) Linear adjustment 
factor on Potential 
Evapotranspiration 

0 - 1 Set to 1.0 

TH (# of grid cells) A threshold number of 
grid cells above which 
a pixel is defined as a 
stream 

- Set to 5.0 
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Table 3: Statistical significance of explanatory variables in GAMLSS model. Not retained or 811 

not considered variable are marked with ‘-’. Significance is expressed as a probability of 812 

rejection. 813 

Variable (Units) α  β  
Basin Area (km2) 0 - 
Elongation Ratio (-) 0.001 - 
Relief Ratio (-) 0 0 
Slope Index (-) 0.001 - 
Slope to Outlet (-) 0.001 0.001 
Annual Precipitation (mm/yr) 0 0 
Mean Temperature (Celsius) 0 0 
K Factor (Erodability) 0 0 
Depth-to-Rock (cm) 0.001 - 
Rock Volume (%) 0 0 
Soil Texture (b parameter) 0.05 - 
Curve Number (-) 0.001 0 
River Length (m) - 0 
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Table 4: Score values of goodness-of-fit for GAMLSS models for α and β. 815 

Summary of the Quantile Residuals α  β  Ideal - Gaussian 
Mean 0.03 -0.01 0.00 
Variance 1.00 1.00 1.00 
Skewness 0.38 0.03 0.00 
Kurtosis 3.36 3.41 3.00 
Filliben Correlation 0.99 1.00 1.00 
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Table 5: Explanatory variables retained by GAMLSS. The minimum, mean and maximum 817 

values of each variable are included for the training and prediction datasets. 818 

Variable (Units) Training Dataset Prediction Dataset 
Min Mean Max Min Mean Max 

Basin Area (km2) 1 2,421 2,926,080 0.71 804 3,138,200 
Elongation Ratio (-) 0.262 0.819 2.718 0.197 1.104 7.899 
Relief Ratio (-) 8x10-6 0.022 0.421 0 0.020 1.099 
Slope Index (-) 2x10-5 0.012 0.375 0 0.032 1.417 
Slope to Outlet (-) 2x10-4 0.023 0.208 0.000 0.037 3.005 
Annual Precipitation (mm/yr) 121 1,053 4,463 2.8x10-3 792 5,675 
Mean Temperature (Celsius) 0.0 11.0 22.9 -5.5 11.0 25.5 
K Factor (-) 0.000 0.256 0.640 0.000 0.259 0.640 
Depth-to-Rock (cm) 9 130 176 9 125 191 
Rock Volume (%) 0 12 100 0 14 100 
Soil Texture (b parameter) 2.79 5.29 11.55 2.79 5.49 11.5 
Curve Number (-) 8 70 92 0 70 100 
River Length (m) 10,071 68,879 5,282,430 638 10,506 5,440,000 
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 820 

Figure 1: Applicability of the kinematic wave approximation over the Conterminous United 821 

States based on slope. The slope grid is based on a 1-km Digital Elevation Model (DEM) grid. 822 
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 824 

Figure 2: Power fit to rating curve data for streamflow (x-axis) and cross-section area (y-axis) 825 

measured in the field for USGS stations: a) 01118010 (~531 km2) and b) 02083500 (~5654 826 

km2). The dots correspond to the field measurements and the dashed line to the power law 827 

regression fit. 828 

829 



 830 
Figure 3: Cumulative distribution of drainage areas over CONUS, computed from the 1-km 831 

drainage area grid. 832 
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 834 

Figure 4: Spatial distribution of rating curve parameters for the catchments of the selected 835 

USGS stream gauges over the CONUS: a) α in log scale; and b) β. 836 
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 838 

Figure 5: Sample of geospatial datasets used in the analysis of spatial variability of rating 839 

curve parameters: a) Relief ratio (log scale); b) K factor (Erodability); c) Mean annual 840 

precipitation (log scale; mm/year); d) Mean temperature (Celsius); e) Mean rock volume 841 

percent (log scale; %); and f) Runoff Curve Number. 842 
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 844 
Figure 6: A sample of the obtained results from the analysis of associations of kinematic wave 845 

model parameters to geophysical variables. 846 
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 848 
Figure 7: Evaluation of the goodness-of-fit of the GAMLSS model estimates of kinematic 849 

wave model parameters α and β : a) Scatter density plots of the reference rating curve 850 

parameter values and estimates produced with GAMLSS for α; b) Same as a) but for β; c) 851 

Conditional percentile plot of α estimates given reference rating curve parameter values; and 852 

d) Same as c) but for β. The 1-to-1 line and values of linear correlation coefficient are 853 

included for each fit in panels a) and b). 854 
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 856 
Figure 8: Samples of a) α a-priori estimates and b) β  a-priori estimates , c) standard deviation 857 

of α  a-priori estimates and d) standard deviation of β  a-priori estimates. Standard deviation 858 

colormaps are stretched to 2% and 98% percentiles. 859 
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 861 
Figure 9: Sample hydrographs showing different simulated flow routing skill signatures. The 862 

hydrographs correspond to events occurred during September of 2009 on the Southeast of the 863 

United States: a) near perfect routing (Mississippi), b) late and low peak (Arkansas), c) early 864 

and high peak (Tennessee), d) early and high peak (Tennessee), e) late and high peak 865 

(Georgia) and f) early and low peak (near Atlanta, Georgia). 866 
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 868 
Figure 10: Histograms of the a) Peak Time Error (hours) and b) Relative Peak Error (%) for 869 

the approximately 47,563 events. Measures of location and scale are included for each case. 870 
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 872 

Figure 11: Quantile plot of conditional distributions of peak time errors with respect to the 873 

mean concentration time of the basins. The diagonal dashed lines show the direct (upper line) 874 

and indirect (lower line) 1-to-1 relationships. The gradients of gray area depict different 875 

distribution bounds: 1 – 99th percentiles, 5 – 95th percentiles, 10 – 90th percentiles and 25 – 876 

75th percentiles. The black solid line represents the median of the conditional distributions. 877 




